

SUBJ	ECT: IIT-IOC	COURSE: GROWTH (XI)	ELP NO1		Topic : Chemical Bonding		
Race	on Lewis-Structı	ıre:					
1.	СО		2.	CO_2			
3.	NO_2^-		4.	NO_3^-			
5.	CCl ₃		6.	$COCl_2$			
7.	N_3^-		8.	O ₃			
9.	CH₃Cl		10.	NH_4^+			
11.	NH ₂ Cl		12.	OCN-			
13.	CN ⁻		14.	SCN ⁻			
15.	HCN		16.	HNC			
17.	SiF ₄		18.	SnCl ₃			
19.	BF_4^-		20.	BH_4^-			
21.	BeF ₄ ²⁻		22.	H ₃ O ⁺			
23.	SO ₃		24.	SO_2			
25.	CO ₃ ²⁻		26.	NO ₂ Cl			
27.	NOCL		28.	F ₂ O			
29.	SO ₄ ²⁻		30.	PO ₄ ³⁻			

SUBJECT: IIT-IOC COURSE: GROWTH (XI) ELP NO.-2 Topic : Chemical Bonding

Only one correct:

- 1. If y-axis is the approaching axis between two atoms, then which of the set of orbitals can not form the π bond between two atoms in general.
 - (A) $p_z p_z$
- (B) $p_x p_x$
- (C) $p_x p_y$
- (D) None of these
- 2. The maximum number of bond and π -bond can be formed between two atoms are respectively.
 - (A) 4, 3

(B) 3, 2

(C) 2, 3

- (D) 3, 1
- **3.** Which of the following set of overlap can not provide π -bond formation.
 - (A) 3d and 2p
- (B) 2p and 3p
- (C) 2p and 2p
- (D) 3p and 1s
- **4.** The ratio of number of σ -bond to π -bond in N_2 and CO molecules are
 - (A) 2.0, 2.0
- (B) 2, $\frac{1}{2}$
- (C) $\frac{1}{2}$, $\frac{1}{2}$
- (D) $\frac{1}{2}$, 2

More than one may be correct:

- 5. If the molecular axis is Z then which of the following overlapping is not possible.
 - (A) $p_z + p_z = \sigma$ bond

(B) $p_x + p_y = \pi$ bond

(C) $p_x + p_x = \pi$ bond

(D) $p_v + p_v = \pi$ bond

Paragraph for question nos. 6 to 8

Different types of bonds are formed in the chemical compounds. These bond have different strength and bond energies associated with them. These bonds are formed with atoms in different environments.

- **6.** Which of the following bond has highest bond energy?
 - (A) σ -bond

(B) π -bond

(C) Hydrogen bond

- (D) None of these
- 7. Which of the following overlapping is involved in formation of only σ -bond
 - (A) s-p overlapping

(B) p-d overlapping

(C) d-d overlapping

- (D) p-p overlapping
- **8.** Which of the following hydrides is thermally least stable?
 - (A) H₂O

- (B) H₂Te
- (C) H_2S

(D) H₂Se

Match the column:

9. Match the column:

	_	
~		
LO	lumn	

- (A) NH₃.BF₃
- (B) CO
- (C) NH₄Cl
- (D) KI_3

Column II

- (P) Ionic bond
- Covalent bond (Q)
- (R) Co-ordinate bond
- (S) 3 lone pair on any one atom

Integer:

10. If molecular axis is X then which of the following overlapping will form π bond.

$$p_z$$
 + p_z , p_x + p_x , p_x + p_y , S + p_z , p_y + p_y

Answer Key

- 1.
- (C)

(A)

- 2.
- (B)
- 3. (D)
- 4.

5.

(B)

- 6.
- 7. (A)
- (B)
- 9. (A)-Q,R,S; (B)-Q,R; (C)-P,Q,R; (D)-P,Q,R,S.
- 02.00 10.

(C)

SUB	JECT: II	IT-IOC	COURSE: GROWTH (XI)	E	ELP NO3	Topic: Chemical Bonding
1.	Draw	the struc	cture of the following molecu	les / i	ions.	
	(1)	XeF ₂		(2)	XeF ₄	
	(3)	XeF ₅		(4)	XeOF ₄	
	(5)	PCl₃		(6)	PCl ₅	
	(7)	SF ₂		(8)	SF ₆	
	(9)	IF ₃		(10)	IF ₅	
	(11)	IF ₇		(12)	OF_2	

(14)

SF₄

(15)	I ₃		(16)	l ₃ -
(17)	OCl_2		(18)	SnCl ₃
(19)	HPO ₃ ²⁻		(20)	SO ₃ ²⁻
(21)	10 ₃		(22)	XeO ₃
(23)	ClO ₃ -		(24)	ClO ₄
(25)	NO_2^-		(26)	PCl ₄ ⁺

 NO_3^-

(13)

(27)

(29)

POCl₃

 $XeF_5^{\scriptscriptstyle +}$

(28) SO₄²⁻

SUBJ	ECT: IIT-IOC	COURSE: GROWTH (XI)	ELP NO4	Topic: Chemical Bonding
Single	e Correct:			
Jg 1.		d MX4 is tetrahderal. The numb	er of < XMX angles i	n the compound is
•	•		•	·
	(A) Three	(B) Four	(C) Five	(D) Six
2.	What is hybric	lisation of central atom of anic	onic part of PBr5 in c	rystalline state.
	(A) sp^2	(B) sp ³	(C) sp	(D) not applicable
3.		fference between bond angles	·	
	(A) 60°	(B) 109°28′	(C) 0°	(D) 90°
4.	All possible bo	ond angles in anionic part of PO	Cl₅ are	
••	(A) 109° 28′ or		(C) 90°, 120°,	180° (D) 72°, 90°, 180°
_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		10	
5.	which of the f	following species does not exis	T?	

6. Statement-1: CH_4 and CH_2F_2 are having regular tetrahedron geometry.

(B) XeF₄

Statement-2: Both are having same hybridization.

(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

(C) XeF₅

- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

More than may be correct

(A) XeF₂

- **7.** Which of following pair of species is having different hybridisation but same shape.
 - (A) BeCl₂ and CO₂
- (B) CO₂ and SO₂
- (C) SO_2 and I_3^+
- (D) ICl_2^- and BeH_2

(D) XeF₆

Paragraph for question nos. 8 to 9

Hybridisation is the mixing of atomic orbital of comparable energy and the number of hybrid orbitals formed is equal to the number of pure atomic orbitals mixed up and hybrid orbitals are occupied by σ bond pair and lone pair.

- **8.** Which of the following geometry is most likely to not form from sp³d hybridisation of the central atom.
 - (A) Linear
- (B) Tetrahedral
- (C) T-Shaped
- (D) See-Saw

- **9.** "The hybrid orbitals are at angle of X° to one another" this statement is not valid for which of the following hybridisation.
 - (A) sp³

(B) sp^2

- (C) sp^3d^2
- (D) sp

Match the column:

- 10. Column -I (Type of orbital)
 - (A) d_{2} -orbital
 - (B) s orbital
 - (C) $d_{x^2-y^2}$ orbital
 - (D) p_y orbital

Column-II

(Orbitals involved in hybridisation)

- (P) sp³ (Tetrahedral)
- (Q) sp³d² (Octahedral)
- (R) sp^3d (TBP)
- (S) dsp² (square planar)

Answer Key

- **1.** (D)
- **2.** (D)
- (C)
- **4.** (B)
- **5.** (A)

- 6.
- (C)
- **7.** (C,D)
- Ω

3.

- (B)
- **9.** (C)
- **10.** (A)-Q, R; (B)-P,Q,R,S; (C)-Q,S; (D)-P,Q,R,S.

SUBJECT: IIT-IOC COURSE: GROWTH (XI) ELP NO.-5 Topic: Chemical Bonding

Only one correct

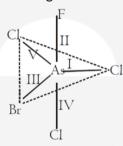
1. Which of the bond length order data is incorrect—

(A)
$$P-Cl > P-F$$
 in PCl_3F_2

(C)
$$S-F_{(1xial)} > S - F_{(eq)}$$
 in SF_4

(B)
$$S-F_{(1xial)} > S - F_{(eq)}$$
 in SF_6

(D)
$$NO_2^- < NO_3^- (N - O)$$


- 2. O₂F₂ is an unstable yellow orange solid and H₂O₂ is a colourless liquid, both have O–O bond. O–O bond length in H₂O₂ & O₂F₂ is respectively.
 - (A) 1.22Å, 1.48Å
- (B) 1.48Å, 1.22Å
- (C) 1.22Å, 1.22Å
- (D) 1.48Å, 1.48Å

- **3.** Select the correct order of following property.
 - (A) % s-character : $sp^3 > sp^2 > sp$
 - (B) \overrightarrow{ONO} bond angle : $\overrightarrow{NO_3} > \overrightarrow{NO_2}$
 - (C) All angles in CH₂F₂ are not identical
 - (D) C F bond length : $CF_4 > CH_3F > CH_2F_2 > CF_3H$
- **4.** The strongest P–O bond is found in the molecule

(A)
$$F_3PO$$

- (B) Cl₃PO
- (C) Br₃PO
- (D) $(3H_3)_3PO$

5. The order of bond length from the following structure.

- (A) |II| > I = V > IV > II
- (C) III > IV > I = V > II

- (B) IV > II > I = V > III
- $(D) \mid \mathcal{I} \mid \mathcal$
- **6.** Comment on the C C bond length for C_2H_6 and C_2F_6 compounds :
 - (A) $d_{C-C}(3_2H_6) > d_{C-C}(3_2F_6)$

(B) $d_{C-C}(3_2F_6) > d_{C-C(32}H_6)$

(C) $d_{C-C}(3_2F_6) = d_{C-C}(3_2H_6)$

(D) Can't be predicted

More than one correct:

- **7.** The correct set of their indicated bond length is:
 - (A) S-S (S₈) > P-P (P₄)
 - (C) d_{S-Cl} ; $SOCl_2 < SO_2Cl_2$

- (B) d_{N-N} ; $NH_2-NH_2 > NF_2-NF_2$
- (D) d_{B-O} ; $B(OH)_3 < [B(OH)_4]^{-1}$

- **8.** The CORRECT statements about the structures of H_2O_2 , O_2F_2 and OF_2 is/are:
 - (A) H_2O_2 , O_2F_2 , OF_2 are polar compounds
 - (B) d_{0-0} of $H_2O_2 > d_{0-0}$ of O_2F_2
 - (C) d_{O-F} of $OF_2 > d_{O-F}$ of O_2F_2
 - (D) the strength of O-O bond in O_2F_2 is greater than that of H_2O_2

Paragraph for Q. No. 09 to 10

According VSEPR theory, in the electronic geometry of the molecule(s), electron pair tend to minimise repulsion and follow the repulsion order in presence of lone pair of electrons with bond pair of electrons. $\ell p - \ell p > \ell p - bp > bp - bp$ and similarly double bond pair of electrons follow the repulsion order with single bond pair of electrons. double bond – double bond > double bond – single bond > single bond – single bond

- **9.** Which of the following molecular geometry is distorted geometry from their ideal geometry.
 - (A) PCl₃F₂
- (B) SOF₄
- (C) XeF₅
- (D) XeO_3F_2
- **10.** Which of the following statement is **CORRECT** about XeO_2F_2 ?
 - (A) XeO₂F₂ is sp³d hybridized and has lone pair of electron at axial position of its electronic geometry.
 - (B) XeO₂F₂ has maximum 10-lone pair of electrons.
 - (C) XeO₂F₂ has distorted see-saw shape.
 - (D) XeO_2F_2 contains $d\pi-d\pi$ bond.

Answer Key

(B) 2. (B) 3. (C) (A) 5. (C) 1. 4. (A) 7. (BD) 8. (ABD) (B) 10. (C) 6.

SUBJECT: IIT-IOC COURSE: GROWTH (XI) ELP NO.-6 Topic: Chemical Bonding

Only one correct

1. Which of the follow	ving statement is CORRECT for
-------------------------------	-------------------------------

$$F_3C - CF_2 - CF_3$$

- (A) All C-F bond lengths are identical
- (B) Two C-F bonds attached to middle C-atom are longer compared to other C-F bonds at the terminal C-atoms
- (C) Two C-F bonds attached to middle C-atom are shorter compared to other C-F bonds at the terminal C-atoms
- (D) None is correct

2.	Choose the	CORRECT	statement	regarding	bond	angle:
	Olioobe tile	CONNECT	Statement	i ogai airig	DOTTO	angu.

(A) FCF in F₂CO < HCH in H₂CO

(B) BrPBr in $PBr_3 < FPF$ in PF_3

(C) $SFS(eq) > FSF(ax) in SF_4$

- (D)All FIF angles in IF5 are identical
- If the %- s-character in one Sb-H bond in SbH3 is 1.0%. What is % p-character is the orbital occupied 3. by its lone pair -
 - (A) 99.0

(B) 97

(C)90

(D) None

Choose correct order of bond length 4.

- (A) S-S bond length : $S_2O_4^{2-} > S_2O_6^{2-}$
- (B) O-O bond length : $H_2O_2 > O_2F_2$
- (C) N-N bond length: $N_2O_3 > N_2O_4$
- (D) All are correct

5. **Statement-1**: ClF_2^- is linear while 2 ClF_2^+ is bent.

Statement-2: Cl - atom in ClF_2^- and in ClF_2^+ , is having same state of hybridisation.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

More than one correct:

- In which of the following, the theory of hybridisation does not help to predict the bond angle? 6.
 - (A) PH₃
- (B) SbH₃
- (C) SiH₄

(D) H₂S

1

7. Choose the CORRECT statements:

- (A) $d_{P-F}(1xial) > d_{P-F}(equatorial)$ in PF_3Cl_2
- (B) $d_{P-F} > d_{P-Cl}$ in PF_2Cl_3
- (C) $d_{P-Cl}(PF_2Cl_3) > d_{P-Cl}(PF_3Cl_2)$
- (D) All d_{P-Cl} (in PF_2Cl_3) are identical while all d_{P-F} (in PF_3Cl_2) are not identical

Match the column:

8. Column-II Column-II

(A) XeF_{5}^{+} (P) Two lone pairs on central atom

(B) ICl₄ (Q) Planar (C) TeCl₄ (R) Non-planar

(D) I_3^+ (S) sp³d² (Hybridization of central atom)

Integer:

9. Identify the pair in which the specified bond length of first is greater than second.

 $\begin{array}{lll} \mathsf{PCl_3F_2}, \ \mathsf{PF_3Cl_2} & : \ \mathsf{BL_{P-Cleq}} \\ \mathsf{SO_2Cl_2}, \ \mathsf{SO_2F_2} & : \ \mathsf{BL_{S=0}} \\ \end{array}$

 BF_3 , BCl_3 : $BL_{B-X} X = F/Cl$

10. How many of the following species have no d-orbitals involved in their hybridisation XeF₂, SnF₂ PbCl₂, SF₄, CCl₄, BF₃, SO₂Cl₂, XeO₂F₂, XeOF₄, POCl₃

Answer Key

- **1.** (B) **2.** (A) **3.** (D) **4.** (D) **5.** (C)
- **6.** (A) **7.** (ACD) **8.** (A)-R, S; (B)-P, Q, S; (C)-R; (D)-P, Q.
- **9.** 04.00 **10.** 06.00

SUBJECT: IIT-IOC COURSE: GROWTH (XI) ELP NO.-7 Topic: Chemical Bonding

Only one correct

- **1.** Select the CORRECT statement for H_2 molecule
 - (A) On time average the molecule is non-polar but at the particular moment it may act as a dipole which is equally probable in all directions
 - (B) On time average the molecule is polar but at the particular moment it does not act as a dipole.
 - (C) On time average the molecule is non-polar and the particular moment it does not act as dipole.
 - (D) All are incorrect
- 2. Select the correct order of B.P.
 - (A) $BF_3 > BMe_3$
 - (C) $BF_3 = BMe_3$

- (B) $BF_3 < BMe_3$
- (D) None of these

- 3. Select the correct statement
 - (A) Boiling point of inert gases decreases down the group
 - (B) Boiling point of inert gases increases down the group
 - (C) Boiling point of $H_2 < He$
 - (D) None of these
- 4. Statement-1: Experimentally 100 % covalent bond formation is not possible [3]

Statement-2: Non-polar molecule has instantaneous dipole – induced dipole interaction

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.
- **5. Statement-1:** CCl₄ has lower boiling point than that of SiCl₄

Statement-2: The magnitude of negative charge developed at chlorine atoms in SiCl₄ is more in comparison to negative charge developed at chlorine atoms in CCl₄

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

More than one correct:

6. London force works in

(A) Polar molecule

(C) All polar and non-polar molecule

(B) Non-polar molecule

(D) Only in polar molecule

7. London forces depends upon

(A) Molecular weight(C) Molecular size

(B) Number of polarisable electron

(D) None of these

Comprehension (Q.8 to Q.10)

The existence of intermolecular forces is supported by the facts: non ideality of real gases, Joule-Thomson effect, liquefaction of gases. The electrical field of a dipole can induce a dipole moment in adjacent molecule (which may be polar or non polar) then the induced dipole can interact electrostatically with the polarising dipole.

8. The strongest force among the following is

(A) London force

(B) Ion-dipole interaction

(C) Dipole- induced dipole interaction

(D) Dipole-dipole interaction

9. Select the CORRECT statement:

(A) Boiling point of NF₃ is greater than NMe₃

(B) Greater the dipole moment in molecule, greater will be the dipole-dipole interaction between the molecules.

(C) London dispersion force increases with decreasing number of electrons

(D) Boiling point of hydrides of carbon family decreases down the group.

10. Noble gases can be liquified due to "_____" between atoms:

(A) ion-dipole interaction

- (B) dipole-dipole interaction
- (C) dipole-induced dipole interaction
- (D) instantaneous dipole- induced dipole interaction

Answer key

1. (A)

2. (

(B)

3.

(B)

4.

(A)

5.

(D)

(D)

6. (ABC)

7.

(ABC)

8. (B)

9.

(B)

10.

SUB	JECT: IIT-IOC	COURSE: GROWTH (XI)	ELP NO8	Topic: Chemical Bonding	
Sing	le Correct:				
1.	Select the cor	npounds in which peroxy lir	nkage is absent.		
	(A) H ₄ P ₂ O ₈	(B) H ₂ S ₂ O ₈	(C) Na ₂ O ₂	(D) H ₂ S ₂ O ₇	
2.	Which of the f	Following oxyacid having cyc	lic structure.		
	(A) H ₂ S ₄ O ₆	(B) H ₅ P ₅ O ₁₅	(C) H ₆ P ₄ O ₁₃	(D) P ₄ O ₁₀	
3.	All the sulphu	r atom has +6 oxidation sta	te in given molecules	except:	
	(A) Oleum	(B) Caro's acid	(C) Dithionic acid	(D) Marshall's acid	
4.	Which of the f	following statement is incor	rect regarding H ₄ P ₂ O ₆	molecule?	
	(A) It may hav	e P-P linkage	(B) It must have P-	O–P linkage	
	(C) It's basicit	y may be three	(D) The number of	p_{π} – d_{π} bonds = 2	
5.	The oxyacid c	ontains E–O–E types of link	age:		
	(A) H ₄ P ₂ O ₅		(B) H ₄ P ₂ O ₆ (hypopho	osphoric acid)	
	(C) H ₂ S ₂ O ₅		(D) H ₂ N ₂ O ₂		
6.	Which of the 1	following having S-O-S linka	ıge –		
	(A) H ₂ S ₂ O ₅	(B) H ₂ S ₂ O ₇	(C) H ₂ S ₃ O ₆	(D) H ₂ S ₂ O ₄	
7.	Which of the f	following oxy-salt does not	exist:		
	(A) Sodium dil	nydrogen phosphate	(B) Sodium dihydrogen hypophosphite		
	(C) Potassium	hydrogen sulphite	(D) Sodium metabo	prate	
8.	For which of t	he following oxyacids all hy	drogen atoms are not	replaceable in nature-	
	(A) H ₂ SO ₄	(B) H ₂ CO ₃	(C) H₃PO₃	(D) H ₄ P ₂ O ₇	

Match the column:

9. Match the column

	Column-I		Column-II
(A)	H <u>C</u> N	(P)	Thio acid
(B)	$H_2S_2O_3$	(Q)	Oxy acid
(C)	H <u>N</u> O ₃	(R)	Atleast one atom is sp hybridised
(D)	H ₂ <u>C</u> O ₂ S	(S)	+5 oxidation state is associated in any one atom
		(T)	Planarity is observed for underlined atoms

Integer:

10. Find the number of dibasic oxy acids in the following. H₂CO₃, H₂SO₃, H₃PO₂, H₃PO₃, H₃BO₃

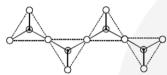
Answer Key

1.	(D)	2.	(B)	3.	(C)	4.	(B)	5.	(A)
6.	(B)	7.	(B)	8.	(C)				
9.	$(A)\rightarrow (R,T); (B)$	→(P,Q);	(C)→(Q,S,T); (D)→(P,Ç),T)	10.	(03.00)		

SUBJECT: IIT-IOC COURSE: GROWTH (XI) ELP NO.-9 Topic: Chemical Bonding

Single Correct:

- **1.** Which of the following minerals contain three oxygen corners shared per silicate unit?
 - (A) $CaMg[(SiO_3)_2]$


(B) BaTi[Si₃O₉]

(C) $Ca_2Mg_5[(Si_4O_{11})_2](OH)_2$

- (D) Al₂(OH)₄[Si₂O₅]
- 2. Number of corner/oxygen atoms shared per tetrahedron in 3-D silicate and pyroxene silicate areand......respectively-
 - (A) 2.5, 3
- (B) 4, 2
- (C) 4, 3
- (D) 2, 2

More than one correct:

3. A mineral contain following tetrameric anion in which \bullet = Si, O = oxygen

Select correct option (s) about anion in mineral -

- (A) Formula of anion is $(SiO_3)_n^{2n-}$ (where n = 4).
- (B) The total 10 negative charges are present in this anion.
- (C) It has three shared oxygen/corners and ten unshared oxygen/corners.
- (D) It is non planar

Comprehension: (Q.4 to Q.6)

Column-I	Column - II	Column - III		
(Unit formula of	(Number of unshared oxygen	(Number of shared oxygen		
different silicates)	in pertetrahedral unit)	in pertetrahedral unit)		
(I) (Si ₄ O ₁₁ ⁻⁶) _n	(i) 2	(P) 2		
(II) (Si ₂ O ₅ ⁻²) _n	(ii) 1	(Q) 3		
(III) (SiO ₂) _n	(iii) O	(R) 4		
(IV) (SiO ₃ ⁻²) _n	(iv) 2	(S) 3		

- **4.** For the sheet silicate the only CORRECT combination is:
 - (A) (II), (i), (P)
- (B) (II), (ii), (Q)
- (C) (IV), (ii), (R)
- (D) (III), (iii), (P)
- **5.** For 3D silicate (silica) the only CORRECT combination is:
 - (A) (II), (ii), (Q)
- (B) (III), (iv), (R)
- (C) (III), (iii), (R)
- (D) (III), (iv), (S)

- 6. For single chain silicate the only CORRECT combination is:
 - (A) (I), (iii), (R)
- (B) (IV), (ii), (P)
- (C) (III), (ii), (Q)
- (D) (IV), (i), (P)

Comprehension: (Q.7 to Q.9)

Read the following short write-up and answer the questions at the end of it

The name 'silica' covers an entire group of minerals, which have the general formula SiO₂, the most common of which is quartz. Quartz is a framework silicate with SiO₄ tetrahedra arranged in spirals. The spirals can turn in a clockwise or anticlockwise direction - a feature that results in there being two mirror images, optically active, varieties of quartz.

The following pictures represent various silicate anions. Their formulae are respectively: 7.

- (A) SiO_3^2 , $Si_3O_7^{2-}$ (B) SiO_4^{4-} , $Si_3O_{10}^{8-}$
- (C) SiO_4^{2-} , $Si_3O_9^{2-}$
- (D) SiO_3^{4-} , $Si_3O_7^{8-}$
- $Si_3O_9^{6-}$ (having three tetrahedral) is represented as: 8.

- 9. In the given following emperical formula of silicates shared and unshared oxygen corner are same by each tetrahedron in.
 - (A) $Si_2O_7^{6-}$
- (B) $\left(\text{Si}_2\text{O}_5^{2-}\right)_n$ (C) $\left(\text{SiO}_3^{2-}\right)_n$ (D) SiO_4^{4-}

Integer:

10. Tremolite is a silicate mineral with fibrous nature and having tetrahedral unit. The molecular formula of tremolite is Ca_2Mgx [Si₈O₂₂(OH)₂] identify the value of x.

Answer Key

- (D) (B) (BCD) 1. 2. 3. 4. (B) 5.
- 6. (D) 7. (B) 8. (B) (C) 10. 05.00

(C)

SUBJECT: IIT-IOC COURSE: GROWTH (XI) ELP NO.-10 Topic: Chemical Bonding

- **1.** H_2SO_4
- 3. $(CN)_2$
- **5.** Cl_2O_7
- **7.** P₄O₆
- **9.** O_2F_2 (dimer form of OF)
- 11. N_2O_5
- 13. N_2F_4
- **15.** SiO₂
- 17. $CaCN_2$
- **19.** P₄S₁₀
- 21. CsH_2PO_2
- **23.** NH₄OCN
- **25.** NaHSO₃
- **27.** $H_2P_2O_5^{2-}$
- **29.** Trithionate ion $(S_3O_6^{2-})$
- **31.** Sulpuryl chloride (SO₂Cl₂)
- **33.** Meta phosphoric acid (HPO₃)
- **35.** Ammonium phosphite
- **37.** Sodium dihydrogen phosphate
- **39.** Potassium bicarbonate (KHCO₃)
- **41.** Peroxy diphophoric acid $(H_4P_2O_8)$
- **43.** Oleum $(H_2S_2O_7)$
- **45.** Caro's acid (H_2SO_5)

- **2.** C_3O_2
- **4.** $Na_2S_4O_6$
- **6.** P₄
- **8.** P₄O₁₀
- **10.** S₃O₉
- **12.** $S_2O_7^{2-}$
- 14. N_2O_3
- **16.** HClO₄
- **18.** CuSO₄.5H₂O
- **20.** RbIO₂
- **22.** NaIO₃
- **24.** H₂S₂O₄
- **26.** H₂PO₃⁻
- **28.** Dithionate ion $(S_2O_6^{2-})$
- **30.** Thionyl chloride (SOCl₂)
- **32.** Pyrophosphoric acid $(H_4P_2O_7)$
- **34.** Peroxy phosphoric acid (H₃PO₅)
- **36.** Sodium hydrogen phosphate
- **38.** Sodium dihydrogen pyrophosphate
- **40.** Calcium carbide (CaC₂)
- **42.** Hyponitrous acid $(H_2N_2O_2)$
- **44.** Marshall's acid $(H_2S_2O_8)$

KT01_7042 1

SUBJECT: IIT-IOC COURSE: GROWTH (XI) ELP NO.-11 Topic: Chemical Bonding

Single Correct:

- 1. A: tetracyanomethane B: carbondioxide C: benzene D: 1,3- buta-di-ene Ratio of σ and π bonds is in order:
 - (A) A = B < C < D
- (B) A = B < D < C
- (C) A = B = C = D
- (D) C < D < A < B
- 2. The geometry of ammonia molecule can be best described as
 - (A) nitrogen at one vertex of a regular tetrahedron, the other three vertices being occupied by the three hydrogens
 - (B) nitrogen at the centre of the tetrahedron, three of the vertices being occupied by three hydrogens
 - (C) nitrogen at the centre of an equilateral triangle, three corners being occupied by three hydrogens
 - (D) nitrogen at the junction of a T, three open ends being occupied by three hydrogens.
- **3.** Find the molecule which is planar and polar.
 - (A) $B_3N_3H_6$
- (B) $F_2C=C=C=CF_2$
- (C) BrF₂Cl
- (D) $F_2C=C=CF_2$

1

- **4.** Find out the incorrect order of the dipole moment among the following pair of compound
 - (A) $NH_3 > NF_3$

(B) p-dichloro benzene > o-dichloro benzene

(C) $CH_3Cl > CH_2Cl_2$

- (D) $SiF_4 < SF_4$
- **5. Statement-1:** Dipole moment of H_2O is more than that of OF_2 .

Statement-2: In H_2O , the resultant bond dipole of O-H bond and the resultant lone pair moment are in opposite direction.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.
- **6. Statement-1:** Allene is a non polar molecule.

Statement-2: Allene is non planar molecule.

- (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1.
- (C) Statement-1 is true, statement-2 is false.
- (D) Statement-1 is false, statement-2 is true.

More than one correct:

- 7. Calculate the % ionic character in HCl molecule, if internuclear distance of H & Cl is 0.8Å and dipole moment of HCl is 1.2 Debye.
 - (A) 31.21%
- (B) 51.2%
- (C) 16.5%
- (D) 40.33%

- 8. Structure of $Na_2[B_4O_5(OH)_4] \cdot 8H_2O$ contains
 - (A) Two triangular and two tetrahedral units of boron
 - (B) Three triangular and one tetrahedral units of boron
 - (C) Five B-O-B linkages
 - (D) One peroxy linkage

Match the column:

9.	Column-I	Column-II
	(A) 2 lone pair	(P) XeF ₅
	(B) Zero dipole moment	(Q) NF ₃
	(C) Planar	(R) ICl₃
	(D) All adjacent bond angles are equal	(S) XeF₄

Integer:

10. Prove that dipole moment of C_6H_5Cl and $m-C_6H_4Cl_2$ are same.

Answer Key (D)

(AC)

- (A) 1.
- 2.
- (B)
- 3.
- 4.

(B)

5.

(C)

- 6.
- (B)
- 7.
- (A)
- 8.
- 9. (A)-P,S; (B)-P,R,S; (C)-P,R,S; (D)-P,Q,S.